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Abstract 
The method of joint probability distribution functions of 
structure factors has been used to estimate quartet 
invariants when prior information on the orientation of 
molecular fragments is available. The mathematical 
approach makes use of the Gram-Charlier expansion of 
the characteristic function, as described by Giacovazzo 
[Acta Cryst. (1976), A32, 91-99] for deriving quartet 
estimates in the absence of prior information. The 
conclusive formula is a v o n  Mises distribution: the 
expected value of the quartet phase may lie anywhere 
between 0 and 2zr. The reliability parameter may be large 
even for proteins, provided the fractionary scattering 
power of the molecular fragments with known orientation 
is sufficiently large. The first practical applications prove 
the correctness of the probabilistic approach and suggest 
the usefulness of the quartet information even in 
molecular replacement methods when a model molecule 
has been oriented by some rotation function and needs to 
be translated into a proper position. 

1. Introduction 
In macromolecular crystallography, it frequently occurs 
(after the application of a rotation function or related 
methods) that the orientation of a molecule is known 
while its absolute position is unknown. The problem has 
been solved by observing that, when a molecule is 
translated in the unit cell, symmetry-related molecules 
move accordingly. As a consequence, all intermolecular 
vectors change (while intramolecular vectors remain 
unmodified) and the absolute position of a molecule 
would correspond to a maximum of the overlapping 
between the calculated cross vectors of the model and 
those of the observed Patterson map. The mathematical 
tool that checks the overlapping is usually called the 
translation function: several functions have been pro- 
posed, which have been reviewed by various authors, 
among which we quote Argos & Rossmann (1980) and 
Beurskens, Gould, Bruins Slot & Bosman (1987). Of 
particular interest for practical applications are the 
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techniques used in X-PLOR (Briinger, 1992) based on 
previous work by Brtinger (1990). To the knowledge of 
the authors, the joint probability distribution function of 
structure factors was never used to locate well oriented 
macromolecules up to a recent paper by Giacovazzo, 
Manna, Siliqi, Bolognesi & Rizzi (1997). A pioneering 
paper by Main (1976) (see also Heinerman, 1977) 
showed how the prior information on the orientation of 
a molecule can be exploited to estimate triplet invariants. 
Subsequent applications by other authors were mainly 
addressed to shifting small molecules correctly oriented 
but wrongly located by the tangent formula. The problem 
of locating a well oriented molecule is not simple because 
the translation function can show many maxima and the 
correct solution may not correspond to the largest one. 
Thus, some alternative approaches deserve to be checked, 
among which direct methods are a respectable candidate. 
Giacovazzo, Manna, Siliqi, Bolognesi & Rizzi (1997) 
have made some preliminary tests on the use of triplet 
invariants in the translation problem. Some real cases met 
in macromolecular crystallography have been revisited; 
for them, direct methods succeeded in locating the model 
macromolecules described in the original publications 
after being oriented by application of rotation functions. 
Besides triplet invariants, a useful tool for direct methods 
is expected to be the quartet invariants. While the 
probabilistic theory of quartets in the absence of prior 
information is already available (Hauptman, 1975a,b; 
Giacovazzo, 1975, 1976a,b; Hauptman & Green, 1976), 
no attempt has been made so far to estimate quartet 
phases when molecular fragments have been previously 
oriented. Such estimates cannot be obtained by simple 
application of the central limit theorem but require the 
use of the more complex method of the joint probability 
distribution functions of structure factors. This paper is 
devoted to the application of such a probabilistic 
approach to the quartet estimation: the first practical 
tests will also be described. For the sake of simplicity, we 
will not consider in our calculations the effect of space- 
group symmetry. To take into account such additional 
information, we should integrate our probabilistic 
approach with the representation method (Giacovazzo, 
1977, 1980a). As a consequence, our theoretical results 
will be strictly valid in P1 but they may be applied in any 
space group. 
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2. Symbols  and abbreviations 

Fh: structure factor with vectorial index h 
~Ph: phase o f F  h 
fj(h): scattering factor of the jth atom 
C~ ------ (R.~, T~): sth symmetry operator. R s is the rotational 
part, Ts the translational part 
m: order of the point group of the space group 
N: number of atoms in the unit cell 
Nf: number of molecular fragments (symmetry indepen- 
dent) with unknown position and fixed orientation 
ni: number of atoms in the ith molecular fragment 
tq: number of atoms (symmetry independent) whose 
positions are completely unknown 
q: number of atoms (symmetry-equivalent included) 
whose positions are completely unknown 
Y~q h = ~--~q=l fj2(h): scattering power of the q atoms with 
completely unknown positions 

N 
Y~N h : ~ - ~ 2 ( h )  

j=l 

q 

~--]~3q(hl, h 2, h3) = ~-~fj(hl)fj(h2)fj(h3) 
j=l 

N 
Y~3N(hl, h2, h3) = Y]~fj(hl)fj(h2)~(h3) 

j= l  

q 

Y~4q(hl, h2, h3) -- y~fj(hl)fj(h2)fj(h3)fj(h4) 
j= l  

N 

~--~4N(hl, h 2, h3) = ~-~fj(hl)fj(h2)~(h3)fj(h4) 
j= l  

ai = Z ; = I  Zj, where Zj is the atomic number of the jth 
atom 
eh: Wilson's factor responsible for the enhancement or 
depression of the intensity of certain subsets 
reflections due to particular symmetry elements 

(I) = q~hl -~- q~h2 7t- q~h3 qt_ ~Dh4 

with h I + h 2 -Jr- h 3 -k- h 4 : 0 
I0(x): modified Bessel function of order zero 

3. The primitive random variables 

The crystal structure can be divided into two parts: the 
first includes Nf molecular fragments with known 
orientation and their symmetry equivalents. The generic 
jth atom belonging to the ith fragment has trial positional 
vector uj and xi is the shift to be applied to the ith 
fragment to translate atoms to the correct positions 

uj + z i, for j =  1 . . . . .  n i, i =  1 . . . . .  N f  . (1) 

The second part of the structure includes q atoms whose 
positions rj are completely unknown. Then the structure 

factor may be written as 

F h : Y~.g~(h) + Fqh = Fph + Fqh, (2) 
i=1 

where 

m ni 

gi(h) = Y~ y]~fj(h) exp[2n'ihC~(uj + 1~i) ] 
s = l  j = l  

: ~ gis(h) exp(2rcihRs'Ci), 
s=l 
rt i 

gi,(h) -- Y'~fj(h) exp(2zrihCsUj) (3) 
j : l  

rn tq 

Fqh(h) : ~ ~-]~fj(h)exp(2zfihCsrj). (4) 
s = l j = l  

We note: (a) The primitive random variables in our 
probabilistic approach are the Nf shifts zi and the tq 
atomic positions rj. Accordingly, the use of the prior 
information reduces the number of primitive random 
variables from (n~Nf + tq) random positions in the 
absence of prior information to t = NT + tq. (b) For the 
sake of simplicity, the mathematical model does not 
allow that atoms occupy special positions. This is not 
critical in most cases. (c) The factors g;s(h) do not depend 
on zi and may be calculated on the basis of the prior 
information for any i and s. (d) Our primitive random 
variables are considered statistically independent of each 
other and are randomly distributed in the unit cell. 
Forbidden domains (eventually generated by the sym- 
metry elements) are not taken into consideration. 
Structure factors may be normalized by observing (Main, 
1976) that 

(Ifhl 2) - E h ~ Igis(h)l 2 -t- ~--~q(h) . (5) 
s=l i=1 

of Then, 

Eh = fh/ (IFhl=) m. 

Let us now make more explicit the notation (1)-(4) since 
it will be heavily used in the probabilistic calculations 
described in the following section. Let ais and bis be the 
real and imaginary parts of g;s, respectively, then, 

ais(h ) = Y~fj(h) cos[2zrh(R~n: + Ts)] = Igislcoscki,, 
j= l  

ni 

b;s(h) = ~ f ( h )  sin[2zrh(Rsuj + T,)] = Ig;sl sin 4~is, 
j= l  

tang)is = b./a.. 

Accordingly, the real and imaginary parts of Eh, say 

E h = A h + iBh, 



C. GIACOVAZZO, L. MANNA AND D. SILIQI 801 

may be written as 

Ah = E E[a ,  , cos(27rhR~z,.) - b,., sin(2rrhRs~i)l 
s= 1 i= 1 

// 4- ~ ~ cos[27rh(Rsr j 4- Ts)] (ifhl2) 1/2 (6) 
s=l i=1 

B h = ~ y~[b,.s cos(2:rrhRs~i) - a,.~ sin(2rrhR,~)l 
s=l i=l 

// + y~ y~ sin[2rrh(Rsr; + Ts)] (ifhl 2) 1/2. (7) 
s=l i=1 

Expressions like (6) and (7) play a central role in the 
process for deriving the quartet phase distribution. 

4. The joint probability distribution 
e(Ehi , Eh~ , Eh3 , Eh4 , Ehl +hz , Ehl +h3 , Ehl +h4 ) when 

molecular fragments have been oriented 

We will use the following notation: 

E l = A I +  

E 2 --  A2 4- 

E3 : A 3 4 -  

E 4 : A 4 4 -  

E5 = A s  4- 

E 6 : A  6 4- 

E 7 : A  7 4- 

where 

h 1 4 - h  2 4 - h  3 4 - h  4 : 0 .  

The joint probability distribution 

P ( 4 1 , 4 2  . . . . .  47, R1, R2 . . . . .  R7) (8) 

will be derived in the following way. 
(a) The characteristic function 

C(/'/1, 1"/2 . . . . .  /'/7, v1, v2 . . . . .  v7) (9) 

of the distribution 

P(A1,  A2 . . . . .  A 7, B1, B2 . . . . .  B 7) 

will be calculated via a Gram-Charlier expansion, by 
including terms up to t -l  order, u~, Vg, i -- 1, 2 . . . . .  7, are 
the carrying variables associated with Ai and Bi, 
i = 1, 2 . . . . .  7, respectively. 

(b) The characteristic function 

C(O1,02 . . . . .  07, Pl ,  P2 . . . . .  P7) (10) 

of the distribution (8) will be obtained via the following 

iB 1 ~- R l exp(i41) = Rh, exp(i4hl) 

iB 2 = R2 exp(i42) -- Rh 2 exp(i4h2) 

iB3 -- R3 exp(i43) = Rn 3 exp(i4n3) 

iB4 = R4 exp(i44) -- Rh4 exp(i4h4) 

iB5 = R5 exp(i45) = Rh~+h2 exp(i4h,+h2) 

i g  6 - -  R6 exp(i46) :- Rh I +h3 exp(i4h~ +h3) 

iB7 = R7 exp(i47) - -  Rhl+h 4 exp(i4h~+h4), 

change of variables: 

u i = 21/2p~ cos 0~, v; -- 21/2p~ sin 0;, i = 1, 2 . . . . .  7, 

A i - - R  icos4i,  B i = R  isin4i, i =  1,2 . . . . .  7, 

0i, p;, i = 1,2 . . . . .  7, are carrying variables associated 
with 4i and R;, i -- 1,2 . . . . .  7, respectively. 

(c) The distribution (8) will be finally derived by 
calculating the Fourier transform of (10). The final result 
is (see Giacovazzo, 1980b) 

P ( 4 1 , 4 2  . . . . .  47, R1, R2 . . . . .  R7) 
oo 2 r r  2~  

(2Yr)-I427R1 "" "R7 f . . .  f f . . .  f PlP2. . .  P7 
0 0 0 0 

x exp{-i[21/ZplR 1 cos(41 - 01) 4 - . . .  

4- 21/2pyRTCOS(47_ 07)]_ (p2 4 - . . .  4- p2)/2} 

x [1 4- S 3 + (34 4- S~/2)1, (11) 

where 

s.= Y~ 2u/2 Y~(Jkr.~ .... /r!s! . . . w!) (U)  
r+s+...+w=iz j 

X (Pl COS 01 ) r (p  2 COS 02) s . . .  (P7 COS 07) w. 

/krs...w are the cumulants of the distribution and the 
summation over j goes over the symmetry-independent 
atoms belonging to some of the molecular fragments, 
with known orientation or without. Lengthy calculations, 
here not reported for brevity, lead to the following 
expression: 

. . . .  R7) 
oo o~ 2rr 2zc 

f . - - f  f - . .  f P, P2 . . .P7  
0 0 0 0 

exp{-i[21/2p1R1 cos(41 - 01) + . . .  

21/2pTR7Cos(47 _ 07)] _ (p2 4 - . . .  4- p~)/2} 

P ( 4 1 , 4 2  . . . . .  47, R1, Rz, 

(27r)-1427Rl . . .  R 7 

x 

+ 

x {1 + i2-1/2[c12sPl 

+ C345 P3 P4 P5 COS (03 

4- CI36PlP3P 6 COS(01 

"q- C246P2PaP 6 COS(02 

4- C237 P2P3P7 COS(02 

"1- C147Pl PaP7 COS(01 

4- 2-1CI234PlP2P3P4 

X 

X 

+ 

+ . . . }  d41 . . .  d47dpl . . .  dp7. 

P2P5 COS(01 + 02 -- 05 -- ff125) 

+ 04 .at_ 05 __ ~'345) 

+ 03 -- 06 -- ~'136) 

-at- 04 + 06 -- ¢246) 

+ 03 -- 07 -- ff237) 

+ 04 "4- 07 -- ff147)] 

COS(01 4- 02 + 03 + 04 -- ~'1234) 

2-2[¢125C345Pl p2P3P4P 2 COS(01 4- 02 4- 03 + 04 

~'125 -- ~'345) 4- C136C246PlP2P3P4p26 

COS(01 + 02 + 03 + 04 -- ~'136 -- ~'246) "at- C237C147 

PlP2P3PaP 2 COS(01 + 02 + 03 4- 04 -- ~237 -- ~'147)] 
- 3 2  2 2 2  2 2 2 2  2 2 2 2  

2 [c125PlP2P 5 4- c345P3PaP 5 + c136PlP3P 6 
2 2 2 2  2 2 2 2  2 2 2 2  

c246pzp4p 6 -~- c147 Pl P4P 7 -4-c237pzp3P7] 

(12) 
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Terms not essential for the estimate of  the quartet phase 
invariant have been omitted from (12). We used the 
following notation: 

_tt2 \ 1/2 Cup = (G, + .k,p) , 
C~p = [ (IF~k l2) (lFh,12) (lFhp l2) ] -1/2 

{mN:  
x ~ ~ [gis(hk)gis(ht)gis(hp)l 

s=l i=I 

x cos[1#is(hk) + 1#is(ht) + 1#is(hp)] 

~Gq(hk, h,, hp)] + 

c'k'tp = [ (IFhk lZ) (lFh, lZ) (lFhp ]2) ] -1/2 
{mU: 

x ~_, ~ Igis(hk)gis(hl)g~s(hp)l 
s=l  i=1 

x sin[1#i~(hk) + 1#i~(ht) + 1#is(hp)] ] 
J 

- 1 t t  t ~p = tan ( % / % ) .  

The indices k, l, p vary over the combinations present in 
(12) for which 

hh + ht + h p = O. 

Furthermore, 

_tt2 x 1/2 
C1234 = (C~2234 "a t- C1234 ) 

¢t1234 : [(IFh112)(IFhzlZ)(lFh3lE)(lFh412)] -r/2 

{mN: 
x ~ ~_, Igis(hl)gi~(he)gi~(h3)gis(h4) I 

s=l i=1 

x cos[1#is(hl) + 1#is(h2) + 1#is(h3) + 1#is(h4)] 

}-~4q(hl, h 2, h 3, h4)] + 

Ct;234 : [( [Fhl i 2) ([Fh 212) ([Fh 312 ) (]Fh 412) ] -1/2 

{,.N: 
x ~ ~_, Igis(hl)gis(hz)gis(h3)gis(h4)] 

s=l i=1 

x sin[1#is(hl) + 1#i~(h2) + 1#is(h3) + 1#is(h4)] ] 
J 

~'1234 = t a n - 1  (c'[234/c1234) • 

The integration of the right-hand side of  (12) may be 
performed by applying well known mathematical tech- 
niques here not reported for brevity. After some 
calculations, we obtain 

P(1#l ,  1#2 . . . . .  1#7, R1, R2 . . . . .  R7) 

y F - 7 / 1 R 2  . . .  R7 exp(-R21 - R 2 - . . . _  R27) 

x {1 + 2 [ c l z s R 1 R 2 R  5 cos(1#l  + 1#2 - 1#5 - ~125) 

+ c345R3R4R5 c°s(1#3 + 1#4 "-~ 1#5 - ~'345) 

+ 

+ 

+ 

+ 

+ 

X 

X 

+ 

where 

c136RIR3R6 c°s(1#1 + 1#3 -- 1#6 -- ~'136) 

c246R2R4R6 c°s(1#2 + 1#4 .qt_ i# 6 _ ~'246) 

c237R2R3R7 c°s(1#2 + 1#3 - 1#7 - ~'237) 

¢147RIRaR7 c°s(1#l  -It- 1#4 + 1#7 - (147)] 

2RIR2R3R4[cI234 c°s(1#l  + 1#2 + 1#3 at- 1#4 - ~'1234) 

¢125¢345(R 2 - 1) cos(1#l  + 1#2 + 1#3 21-1#4 

~'125 - (345) Jr- c136c246(R 2 - 1) 

cos(1# 1 't- 1#2 '[- 1#3 + 1#4 - ~'136 - ~'246) -[- c237¢147 

( e~  - 1 ) cos (1# l  --1- 1#2 + 1#3 ~- 1#4 - ~'237 - ~'147)] 

Q + . . . } ,  (13) 

O 2 2 = c125(R 1 - 1)(R~ - 1)(R52 - l) 
2 2 + c345(R3 1)(R 2 - 1)(R 2 - 1) 
2 2 -~- C136(R 1 - -  1)(R~ - 1)(R~ - 1) 
2 2 + ¢246(R2 1)(R 2 - 1)(R 2 - 1) 
2 2 -~- C237(R 2 1)(R 2 -- 1)(R~ - 1) 
2 2 + C147(R 1 - -  1)(R42 - 1)(R 2 - 1). 

Equation (13) is the main result of  this paper. If  no well 
oriented molecular fragment exists then 

)--~.3q(hk, hi, hp) = )--~.3N(hk, hi, hp), 

~--~q(h) : ~--~N(h), (IFhl 2) = y~N(h), 

, -1 /2  
Cup = )--~.3N(hk, h t, hp)[ y~.N(hk) y~N(h,) y~N(hp)] , 

f! Cup = 0 ,  

C11234 --- Z 4 N ( h l ,  h2 ,  h3 ,  h4)  

x [ Y~.u(hl) y~N(h2) y~m(h3) y~.u(h4)] -1/2, 

It 
C1234 : 0,  

/ 3/x ~ N-1/2, ~ cr4/cr22 ~ N_I Ckl p - -  v 3 / v  2 = C1234 = = 

In these conditions, distribution (13) coincides with 
equation (8) of  Giacovazzo (1976a). 

5. The conditional probability distribution 
P(@IR1,R2,...,R7) 

We are often interested in the conditional distribution 

P( dPIR1, R 2 . . . . .  R7). (14) 
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Equation (14) may be derived in four steps: 
(a) By integrating (13) over ¢5, ¢6 and ¢7 SO obtaining 

the marginal distribution 

P(¢I, ¢2'  ¢3 '  ¢4 '  R1, R2 . . . . .  R7). (15) 

Equation (15) does not contain triplet terms. 
(b) By stating in (15) the identity 

2R1R2R3R4[c1234 c0s(¢1 q- ¢2 Jr- ¢3 + ¢4 - ~1234) 

+ c125c345(R 2 - 1) c0s (¢  1 -q- ¢2 3t- ¢3 ']- ¢4 - ~125 

- ~345) -Jr- c136c246(R 2 - 1) c 0 s ( ¢  1 + ¢2 + ¢3 "]- ¢4 

- ~136 - ~246) "~- c237c147( R2 - 1) 

x cos (¢  I --~ ¢2 + ¢3 + ¢4 - ~237 - ~147)] 

--" IX COS(¢1 -'[- ¢2 "[- ¢3 "31- ¢4 -- ~)' 

where 

IX COS ~ -- 

IX sin ~ = 

2R 1R2R3R4[cI234 cos ~'1234 

@ c125c345(R ~ - 1) c0s(~125 --1- ~'345) 

.-]- c136c246(R 2 - 1) c0s(~136 -Jl- ~246) 

71- c237c147(R 2 - 1) COS(~237 "-]- ~147)]' 

2R1R2R3R4[cI234 sin ~1234 

+ c125c345(R 2 - 1) sin(~'125 + ~345) 

-1- c136c246(R ~ -- 1) sin(~136 + ~246) 

+ c237c147(R 2 - 1) sin(~'237 + ~'147)], 

IX --- [(IX COS ~) 2 -~- (IX Sin ~)2] 1/2, 

= tan-I [(ix sin ~)/(IX cos ~)]. 

(c) By integrating such a modified distribution over ¢1, 
¢2, ¢3, ¢4 under the condition that ¢1 + ¢ 2 +  
¢3 + ¢4 = ~.  Then the distribution 

P ( ~ ,  R1, R2 . . . . .  R 7) 

64zr -1R1. . .  R7 exp( -R  2 - . . .  - R 2) 

x [1 + Q +  Ixcos(¢ - ~)] 

is obtained• 
(d) By calculating 

P(~IRI,  R2 . . . . .  R7) 

= P ( ~ ,  R l, R 2 . . . . .  R7) f e ( ~ ,  R 1, R 2 . . . . .  R7) d ~  
o 

= 2~-1[1  n u IX(1 + O ) - i  c o s ( ~  - ~)], 

which may be approximated by the normalized von 
Mises distribution 

P(*IR, ,  R2 . . . . .  R7) ~ [2n'Io(G)] -~ exp[G cos(q~ - ~)], 

(16) 

where 

G = Ix/(1 + Q). (17) 

We note: (i) the expected value of @ is ~, which may 
assume any value between 0 and 2n'. (ii) G is the 
reliability parameter: it is always positive. A large value 
of G indicates that the phase relationship ~-~. ~ is 
reliable. (iii) Q is a scale factor that modulates the 
reliability of the phase indication. It may be settled to 
zero when it is found to be negative (Giacovazzo, 1980b). 
(iv) If no molecular fragment is oriented, (16) reduces to 
the well known Giacovazzo (1976a, 1980b) quartet 
formula. 

6. A geometric interpretation of the quartet phase 
distribution function 

The estimate of • via (16) depends on an intricate 
interrelationship between the seven magnitudes R;, the 12 
parameters cktp and ~'ktp, and the two parameters c1234 and 
~1234- In order to understand the potentiality and the main 
characteristics of the formula, we describe here a 
geometric interpretation that will help the reader to 
better understand our results and to design its possible 
use. 

Let us calculate (EhkEhlE h ) when h k + h t + hp = 0. 
According to (1) and (2), P 

][" 1 (EhkEh, Ehp) = Eg i (hk )  4- Fqh k E gi(ht) -b Fqh , 
i=1 i=1 

[" 1) × I2 g,(hp) + Fqh, 
i=l 

× ((]fhk la)(ifh, iz)(ifh p 12))-1/2 

[" 
: ~i £gis(hk)gis(hl)gis(hp)s=l 

123q(hk, ht, h,) / + 

× ((iFh k 12)(iFh, 12 ) (]Fh p 12 ) )-I/2 
• It = C'up + tCup 

= Ckl p exp(i~'/dp). (18) 

Similarly, 
I • II 

(gh, Eh2Eh3Eh4 ) = ¢1234 "1-/C1234 = C1234 exp(i~1234)- 

(19) 

According to (18), Cktp is the expected value of 
I g h g n E h l  and ~'klp is the expected value of 

k I p 

(¢hk + ¢ht + Cho)- Similarly, c1234 is the expected value 
of Ighgh2gn3gh41 and ~1234 is the expected value of 
(¢hl'21-¢h2-'~-¢h3-1t-¢h4) w h e n  [ghl+h2l, Igh,+h~l and 
Ieh2+h3l are all unknown. If such cross magnitudes are 
known, the quartet Eh, EhEh3Eh, may be considered 
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equal (but for the real positive factor R2 +hz) to the 
product (Eh, Eh2Eh, +h2)(Eh3 Eh4 Ef~ +f~). Therefore, 

(Eh~ Eh2Eh3Eh4) ~ L (Eh, Eh2 Eh, +h2 " Eh3 Eh4Ef, +f2 )' 

where L is a scale factor. If the two triplets are considered 
independent of each other then 

(Ehl Eh2 Eh3 Eh4 ) ~'-- L (Ehl Eh2 Ehl +h2 ) (Eh3 Eh4 Eft, +f2 ) 

Lc125C345 exp i(~'125 + ~'345)" (20) 

In fact, the two triplets are not independent and our 
distribution suggests replacing (20) by 

c125c345(R 2 - -  1) exp i(~125 + ~'345). 

If the same considerations are applied to the cross 
reflections E 6 and E7, we could conclude that the 
complex parameter G exp(i~), as defined in (17), may 
be recovered [unless the scaling factor is (1 + Q)-I] by 
adding four vectors (see Fig. 1): 

(I) the vector c1 with modulus 2 R 1 R 2 R 3 R n c 1 2 3 4  and 
phase ~'1234; 

(II) the vector c2 with modulus 2R1R2R3R4× 
c125c345(R 2 - -  1) and phase ~125 21- ff345; 

(III) the vector c3 with modulus 2R1R2R3R4× 
c136c246(R 2 - -  1) and phase ~136 + ~246; 

(IV) the vector c4 with modulus 2RIRzR3R4× 
c147e237(R 2 - -  1) and phase ~'147 + ~'237- 

It may be observed that: (a) 2R1R2R3R4 is contained in 
all the four moduli c v Thus, a large value ofR1RzR3R 4 is 
a necessary condition for the reliability of the phase 
relationship • ~ ~. (b) The values of the factors c1234 , 
c125c345, c136c246 and c147c237 depend on the structure 
complexity and on the scattering power of the molecular 
fragment in fixed orientation. When such a power is 
small, the four factors are close to N -1 and (16) is of no 
use in macromolecular crystallography. If the power is 
large enough, the resultant modulus G may be suffi- 
ciently large to be useful for proteins too. (c) Large G 

l $ 7  + ~237 

~ 36 + ~246 
imag. axis ...... 

v 

real axis 
Fig. 1. The complex reliability parameter G exp(i~) in the Argand plane 

in terms of component vectors. 

Table 1. Code name, space group and crystallochemical 
data for test structures 

NREF is the number of symmetry-independent reflections. 

Code name Space group N R E F  Resolution (A) 
M-FABP (a) P2 ~212~ 7595 2.14 
LPH (b) P2 t 17352 1.50 
STM (¢) P2~2~2~ 9758 1.97 
XSD (a) P2~212~ 19056 2.01 

References: (a) Zanotti, Scapin, Spadon, Veerkamp & Sacchettini 
(1992); (b) Rizzi, Wittemberg, Coda, Fasano, Ascenzi & Bolognesi 
(1994); (c) Nardini, Tarricone, Rizzi, Lania, Desideri, De Sanctis, 
Coletta, Petruzzelli, Ascenzi, Coda & Bolognesi (1995); (d) Djinovic 
Carugo, Collyer, Coda, Carri, Battistoni, Bottaro, Polticelli, Desideri & 
Bolognesi (1993). 

values are obtained if the following conditions are 
satisfied: 

(i) ~'1234 "~" ~'125 + ~'345 ~ ~'136 "[- ~'246 '~' ~'147 "71- ~'237; 
(ii) (R 2 - 1), (R~ - 1) and (R~ - 1) are all positive or 

all negative. 
For small molecules, the conditions (i) and (ii) are 

satisfied if the moduli R,, i -- 1, 2 . . . . .  7, are sufficiently 
large. That is not probable for macromolecules. (d) 
Unreliable phase indications are obtained when the four 
vectors c; are randomly distributed over the trigonometric 
circle. 

7. The first applications 

We used four protein structures to test the efficiency of 
(16): code name, space group and other useful data are in 
Table 1. We checked the correctness of the formula (16) 
in ideal conditions: the full structure is the search model, 
the structure factors are calculated from the published 
crystal structure up to experimental resolution. 

It is well known (see Giacovazzo, Burla & Cascarano, 
1992; Burla, Cascarano & Giacovazzo, 1992; Cascarano, 
Giacovazzo, Molitemi & Polidori, 1994; and literature 
quoted therein) that quartets with large cross magnitudes 
are strongly correlated with triplets: accordingly, the 
simultaneous use of triplets and of large-cross-magnitude 
quartet invariants is not advised. Even if this result was 
established when no prior information on the orientation 
of a molecule is available, it is very likely that it holds 
even in the case treated in this paper. We therefore 
focused our attention on the quartet invariants with small 
cross magnitudes only. 

For each of the four test structures, NLAR reflections 
(those with the largest IEI values) are selected, among 
which the basis vectors of the quartet invariants are 
found. The computing technique (widely used in 
literature) requires the computation of the psi-zero 
triplets, each triplet having two strong-magnitude reflec- 
tions in the set NLAR and one small-magnitude 
reflection. A quartet is considered in our statistical 
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Table 2. Statistical calculations for triplet invariants 
[estimated via (21)] and quartet invariants [estimated 
via (16)]for all the test structures using the full published 

structure as search model 

NR is the number of triplets (quartets) having T > ARG (Q > ARG), 
(IA~I) is average error (°), % is the percentage of triplets with 
IA~I > u/2. 

M-FABP 

Triplet invariants Quartet invariants 
ARG NR % (IAOl) NR % (IA~I) 

0.0 21897 99.0 20 200000 99.0 18 
0.4 21754 99.1 19 19728 99.4 18 
2.0 15173 100.0 15 7920 100.0 13 
3.2 5552 100.0 12 910 100.0 10 
4.4 809 100.0 8 23 100.0 7 
6.5 3 100.0 4 - - - 

LPH 

Triplet invariants Quartet invariants 
ARG NR % (1~1) NR % (IAOI) 
0.0 10455 99.5 12 8497 98.8 15 
0.4 10438 99.5 12 8474 98.9 15 
2.0 10205 99.8 11 7940 99.5 14 
3.2 8958 99.9 11 5881 99.7 13 
4.4 3471 99.9 10 2537 99.8 12 
6.5 204 99.5 14 365 99.5 14 

15.0 4 100.0 8 9 100.0 8 

STM 

Tripletinvariants Quartetinvarian~ 
ARG NR % ([AO[) NR % (]AO[) 

0.0 17455 99.8 15 20000 99.8 18 
0.4 17406 99.8 15 19802 99.4 17 
2.0 13198 100.0 13 7727 100.0 13 
3.2 4535 100.0 9 756 100.0 9 
4.4 348 100.0 4 22 100.0 6 

XSD 

Triplet invariants Quartet invariants 
ARG NR % (IAOI) NR % (IA¢I) 

0.0 11357 100.0 11 20000 99.9 13 
0.4 11357 100.0 11 19974 99.9 13 
2.0 10877 100.0 10 15972 100.0 12 
3.2 7710 100.0 9 5658 100.0 10 
4.4 2462 100.0 7 585 100.0 7 
6.5 10 100.0 2 2 100.0 3 

calculations only if  

R 2 + R~ + R 2 < 2. 

A statistical analysis of  the results is shown in Table 2. Nq 
is the number  of  the quartets having G > ARG,  

( I A + I )  = ( l ~ ' ~ e  - +estl) 

is the corresponding average o f  the absolute difference 
between the ' t rue '  (corresponding to the published test 
structure) quartet phase and the quartet phase estimated 
via (16), % is the percentage of  quartets for which 

(IAOI) is smaller than zr/2. For reader usefulness, 
quartet results are always compared with the correspond- 
ing triplet invariants (calculated for the same N L A R  
reflections). Triplets were estimated via the Main (1976) 
formula 

P(O3) ~ [2zrI0(T)] -1 exp[Tcos(O3 - ~3)], (21) 

where 

(I) 3 "-- (~Ohl "]- (~h 2 + (jDh3 with h 1 -k- h 2 q- h 3 = 0 

Z = 21EMhEMhzEMh31[(T '2 -+ Z 'a) 
x ((IFh, 12)M(IFh212)M(IFh312)g)-l] 1/2 

Fm Nf 1 
r'  = 9t L ~=lj~=lgis(h)lgi,(h2)gis(h3) + Z3q(h l ,  h2, h3) 

[- m Nf "] 
T"= Z| sY~ y]gis(h)agi,(h2)gg,(h3)| 

L = l j = l  _] 

tan~3 = T"/T'. 

Two features in Table 2 should be noted: the first is that 
the reliability parameter  of  the quartets spans over large 
A R G  intervals, even if  with a frequency slightly smaller 
than that of  the triplet parameter. The second feature to 
note is that, for equal values of  the reliability parameter, 
triplets and quartets show a similar reliability. For 
example, for M-FABP, the percentage of  quartets with 
G > 0.4 for which I A ~ I  < re/2 is 99.1; the correspond- 
ing percentage for triplets is 99.4. It may be concluded 
that (16) works correctly. However, the quartet behaviour 
is quite different from that corresponding to the so-called 
negative quartets calculated in the absence of  prior 
information. Indeed, in this case, negative quartet 
reliability is much smaller than triplet reliability and 
rapidly decreases with increasing unit-cell size. We guess 
that the prior knowledge of  the molecule orientation 
provides negative quartets with a big supplement o f  
information that can make them competitive with triplet 
relationships. In order to check the quartet reliability 
when the prior information on the molecular orientation 
concerns only a fragment (and not all the structure), we 
suppose that only 60% of  the asymmetric unit is well 
oriented and the rest is unknown. The statistical analysis 
o f  the triplet and quartet reliability is shown in Table 3. 
We observe: (a) as expected, the average triplet and 
quartet reliabilities decrease with respect to Table 2; (b) 
even if  lower than triplet reliability, quartet reliability is 
potentially useful. The above results open the way to a 
possible application of  small-cross-magnitude quartets in 
molecular replacement techniques. 

8. C o n c l u s i o n s  

The probabilistic theory of  the quartet invariants when 
the orientation of  a molecular fragment is known while 
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Table 3. Statistical calculations for  triplet invariants 
[estimated via (21)] and quartet invariants [estimated 
via (16)] for  all the test structures using 60% of  the 

structure as search model 

NR is the number of triplets (quartets) having T > ARG (Q > ARG), 
(IA~I) is average error (o), % is the percentage of triplets with 
IA~I > zr/2. 

M-FABP 

Triplet invariants Quartet invariants 
ARG NR % (IA~I) NR % ([Aq~I) 

0.0 25889 71.8 64 20000 63.5 73 
0.4 22926 73.7 62 12081 68.0 69 
2.0 1575 91.0 40 196 80.6 54 
3.2 123 96.7 32 18 88.9 40 
4.4 4 100.0 30 

shown that only if the Main (1976) formula for triplets is 
suitably modified can triplet invariants be usefully 
applied to solve the translation problem. Similar 
modifications to (16) would probably be necessary to 
make it sufficiently robust to succeed in practical use 
(where errors in measured data are combined with errors 
in the model fragment and in its orientation). (ii) The 
quality of  the information yielded by negative quartet 
invariants in practical cases has still to be compared with 
that provided by triplet invariants. In other words, we 
have to establish if  the use of  additional computing 
resources necessary for the estimation and the use o f  
quartet invariants in the phasing procedure are justified 
by better results. Both the above problems will be 
investigated in a future paper. 

LPH 

Triplet invariants Quartet invariants 
ARG NR % (IA~I) NR % (I/Xq~l) 
0.0 13063 78.8 36 20000 68.0 69 
0.4 12538 79.7 55 15769 71.5 65 
2.0 4512 89.8 42 2209 83.7 50 
3.2 1221 92.6 37 414 82.1 52 
4.4 220 90.5 37 75 73.3 63 
6.5 14 57.1 75 3 33.3 133 

STM 

Triplet invariants Quartet invariants 
ARG NR % (IA~I) NR % (IA~I) 

0.0 19010 73.8 62 20000 63.4 74 
0.4 16680 75.7 59 10355 69.2 67 
2.0 891 92.8 41 78 84.6 47 
3.2 55 94.5 31 2 100.0 17 
4.4 2 100.0 1 - - 

XSD 

Triplet invariants Quartet invariants 
ARG NR % (I/X~l) NR % (IA~I) 
0.0 11474 77.0 59 20000 66.7 70 
0.4 10794 78.0 57 15157 70.2 66 
2.0 2184 90.8 40 717 86.8 49 
3.2 287 95.8 31 64 90.6 46 
4.4 36 94.4 32 5 100.0 38 

its absolute position is unknown has been described. The 
conclusive formula estimating the quartet phase is of  von 
Mises type: the expected phase value may lie anywhere 
between 0 and 2n,  the reliability parameter may be large 
enough even for proteins, provided a sufficiently large 
fragment has known orientation. Accordingly, quartets 
can find useful applications in molecular replacement 
methods as an alternative to the widely used translation 
functions. The role of  the quartet invariants in molecular 
replacement methods has still to be established. There are 
two main problems to solve: (i) Recently (Giacovazzo, 
Manna,  Siliqi, Bolognesi & Rizzi, 1997), it has been 
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